

Lessons Learned Workshop for PI-Led Planetary Science Missions

Project Management and Industry Perspectives & Discussion – an SwRI Perspective

Bill Gibson
Assistant Vice President
Space Science and Engineering Division
Southwest Research Institute
(210) 522-2700
bgibson@swri.edu

Presentation Topics

- Overview comments.
- Business office challenges and issues.
- Schedule management.
- Earned value.
- Requirements management.

PL-Led Mission Management

- SwRI experience with PI-Led missions includes SMEX (IBEX, Twins),
 MIDEX (IMAGE), and New Frontiers (New Horizons, Juno).
 - Experiences have been generally good, with a few exceptions and some special considerations.
 - Difficult to go back to the classic NASA-Led mission management structure after 10 consecutive years of working PI-Led missions.
- Management experiences with PI-Led planetary missions (New Horizons, Juno) is consistent with earlier experiences from SMEX and MIDEX.
 - PI and PM are responsible for all aspects of project performance.
 - PI's institutional business infrastructure will be taxed to the limit.
 - Successful management of the schedule is absolutely essential to mission success.
 - Procrastination is death problems have to be dealt with the first time they appear.
 - Requirements management will prove more important than you thought it would when you write your proposal.

Special Issues w/PI-Led Mission Management

- Business office challenges can be overwhelming if not prepared.
 - You effectively serve as NASA you are the funding source for all of your team members.
 - Extensive time is required for preparing subcontract statements of work, preparing RFP packages, evaluating subcontract proposals, developing integrated spend plans, and monitoring team member's performance.
 - An experienced subcontracts managers is essential.
 - As PM, you are responsible for managing the funding of all of your team members.
 - Cash flow can be especially difficult.
 - Even if you have not been funded, you still have to pay the invoices of your team members.
 - Negative cash flow can run into 100's of K or more on a monthly basis.
 - Commercial for-profit team members cannot wait for their funding, you must be prepared to function as the bank to carry the float on invoices.

Schedule Management

- Schedule management essential to mission success.
 - If you cannot control the schedule, you have no prayer of controlling cost.
 - You scheduling process has to be timely, accurate, and trusted.
 - System and subsystem suppliers have to "own" their schedules.
 - Scheduling process has to be capable of integrating schedules from a variety of software packages.
 - An integrated mission schedule has to be generated and reviewed monthly.
 - Schedule trends can be very revealing.
 - Schedule metrics do not need to be complicated to be useful for decision making and resource allocation.
 - The management team has to be seen by the project team to be serious and CONSISTENT about schedule performance.

Example Metric from New Horizons

Instrument Development Status - Alice										
System	Subsystem	Design			Fab			Test		
		BB	EM	FM	BB	EM	FM	BB	EM	FM
Telescope	Housing									
	Mech. Comp.									
	SOC Door									6/4/04
Detector	МСР									
	Electronics									
	Packaging									
Power	HVP S									
	LVPS									
Controller	Hardware									5/29
	Software									6/2
EGSE	Hardware						5/27/0			5/24
	Software						5/27/0			5/27
MGSE										6/23
Documen.	ICD									
	Spec.									
	TLM/CMD DB									

Complete Problem	In Work Not Started N/A
------------------	-------------------------

Schedule Slack Summary Chart

Schedule Audits

- Schedule audits can be very helpful, especially in early days of the project.
 - In-plant audit of the work accomplished vs. the claim of accomplishment on the team's schedule.
 - Experience shows multiple types of findings from a typical schedule audit.
 - The actual schedule being used by the team has nothing to do with the schedule submitted to the PM.
 - The claim of progress made to date is exaggerated quite a bit.
 - The team is inexperienced in scheduling in general and does not know how to produce a useful schedule.
 - The team thinks scheduling is a waste of time and have invested little if any effort in developing or tracking a schedule.

Earned Value

- Believe it or not, an earned value system can be worth the trouble.
 - Experience has shown that EV is the best EARLY indicator of trouble – that too much money is being spent for the work being accomplished.
 - EV often gets a bum wrap on religious grounds.
 - EV does not need to be elaborate or expensive to be of value.
 - Even +/- 20% accuracy is good enough to use to take corrective action.
 - Can be generated within the scheduling process, if the institutional cost accounting system can track cost against the WBS.
 - A homemade EV system can be good enough if the data is accurate and timely.
- EV is coming, like it or not, but it can be of significant help in cost performance management.

EV Examples (1)

EV Examples (2)

Requirements Management

- Generally a top-down structured process staring with the Level 1 science requirements and mission requirements.
- Can flow all the way down to the subsystem level in a comprehensive requirements management process.
 - Requirements management is the backbone of the project's verification process.
- DOORS used extensively as a tool for management the flow down and linkages between requirements.
- Sounds easy enough however, in practice several problems can (and did) develop that can devour resources.
 - Requirements have to written in such a way as to be verifiable!
 - Wring verifiable requirements is not a natural skill to most engineers.
 - It takes time and work to setup a requirements management process and there is nothing fun about it.

Example Flow Down – AIM Mission

Requirements Management

- Acceptance of requirements ownership proved amazing hard.
 - Example, the spacecraft team never thought it was their job to verify instrument interface requirements.
 - Instrument teams were sure if was the spacecraft's job to verify interface protocols, cabling, labeling and marking, etc.
 - Budgeting adequate time for verification closure proved to be very hard and became a threat to maintaining the master schedule.
 - The same people needed for verification closure are probably the same people running the I&T process late in the development schedule.